PAH BUSINESS MEETING

The role of Pipelines in a low carbon energy future

Aura Informatica

Connecting the dots in the energy value chain

May 5, 2025

Pipeliners Association of Houston

PIPELINES: ADAPTING TO A NET-ZERO ECONOMY

Pipelines: A Vital Part of the Clean Energy Future:

Efficient and reliable energy transportation remains crucial, even as the energy mix evolves

Strategic Investment is Key:

Planning and investment are essential to ensure pipelines support a sustainable energy system

Multiple Pathways to Net-Zero:

Pipeline infrastructure can be leveraged for:

- Hydrogen transport
- Biogas distribution
- CO2 transport for Carbon Capture and Storage (CCS)

THE EVOLVING CCUS LANDSCAPE

Significant CCUS Project Pipeline:

Approximately 330 MMTPA of CCUS projects are currently in various stages of development

Ambitious DAC Hub on the Horizon:

A feasibility study is underway for the Red Rocks Direct Air Capture (DAC) Hub in southwest Utah. This geothermal-driven hub aims to capture approximately 100 MMTPA of CO2

Texas Leads in CCUS Development:

Texas accounts for roughly 30% of all CCUS projects currently under development, demonstrating its prominent role in this sector

Louisiana - Center of Current CCUS Construction:

The majority of CCUS projects presently under construction are in Louisiana, indicating its current focus on implementation

CO2 CAPTURE PROCESS OVERVIEW

Established Capture Technologies:

Existing capture technology is evenly distributed across Pre & Post Combustion and Industrial Separation

Focus on Post-combustion and Industrial Separation:

Majority of the new projects are based on Post Combustion technology followed by Industrial Separation

DAC – High Potential, Dependent on advancements:

Significant potential for future scale up, contingent upon further technology enhancements and achieving commercial viability

CCUS: KEY ROLE IN DECARBONIZING HARD-TO-ABATE SECTORS

Key GHG Emission sources:

The Power generation & industrial sectors combined accounted for nearly 50% of the US GHG emissions as of 2022*

CCUS Focus: Key Industries:

Over 70% of the projected CO2 capture initiatives are focused on these hard-to-abate sectors (power, industrial, processing etc.)

CCUS: Enabling low carbon Hydrogen:

CCUS emerging as a key enabler for realizing low-carbon Hydrogen potential – Blue Hydrogen projects make up 65% of the US hydrogen development pipeline

PIPELINES ARE A CRITICAL LINK IN THE CCUS VALUE CHAIN

On-site capture and pipeline transport:

Almost 60% of the announced CCUS projects will capture CO2 at the source and then transport it via pipelines to sequestration hubs

Growing importance of Pipelines:

As DAC projects (most currently in their early feasibility stages) evolve, the role of pipelines in transporting sequestered CO2 will become even more critical

PIPELINES ARE A CRITICAL LINK IN THE CCUS

VALUE CHAIN

Extensive existing infrastructure:

The US boasts a substantial CO2 pipeline network, currently exceeding 5,000 miles

Key Players:

ExxonMobil (via Denbury) and Kinder Morgan are the dominant operators in the CO2 pipeline sector

Significant expansion planned:

Approximately 2,300 miles of new CO2 pipelines are in the planning stages

Mega-Project dominates development:

Summit Carbon Solutions' "Midwest Carbon Express" project, a 2,100-mile pipeline, accounts for most of the planned construction. This project will collect CO2 from 59 ethanol plants across five states and transport it for sequestration in North Dakota

Regional Focus:

The remaining planned pipeline projects (approximately 200 miles total) are concentrated in the Gulf Coast region

PIPELINES ARE A CRITICAL LINK IN THE CCUS VALUE CHAIN

Project Lochridge (Crescent Midstream):

Repurposing a 110-mile pipeline corridor to transport captured CO2 from industrial facilities in the Geismar, LA area to an offshore Louisiana sequestration hub

Project YaREN (Enbridge & Yara):

A joint venture to develop a low carbon ammonia production facility an Enbridge's Ingleside Energy Center

OLCV/ Enbridge CO2 pipeline:

A proposed 64-mile CO2 pipeline system that would transport the captured CO2 from the ammonia facility along with multiple other receipt points to OLCV's South Texas DAC/Sequestration Hub

304.001714

@2025 AURA INFORMATICA. ALL RIGHT RESERVED

KEY TAKEAWAYS

- Integration of pipelines with other low-carbon technologies is essential
- Achieving zero emissions will require extensive use of carbon capture utilization and sequestration (CCUS) and significant policy support to drive the adoption of zero-carbon fuels
- Significant investment in CO2 pipeline infrastructure is required for large-scale CCUS deployment, with estimates ranging from \$16.3 billion to \$230 billion for new pipelines by 2050

Unravel the complexity of Energy Infrastructure dependencies with EnergyConnexions

Uncover hidden dependencies:

Identify critical infrastructure connections and dependencies

Gain competitive insights:

Analyze basin landscapes for informed M&A and JV decisions

Map your low-carbon future:

Develop and optimize sustainable infrastructure strategies

Optimize transportation costs:

Analyze flow data, tariffs, shippers and choose the most efficient pipeline routes

Reduce logistics complexity:

Leverage existing infrastructure interconnections for smoother product movement

Active Gas Processing Plants - Delaware Basin

CONFIDENTIAL - NOT FOR EXTERNAL DISTRIBUTION

PAH Business Meeting

Thank You

Prasun Chaudhury CEO, Aura Informatica

Email: pc@aurainformatica.com

Phone: +1 832 876 2034

May 5, 2025

The Pipeliners Association of Houston

