The Pipeliners Association of Houston Specifying the Correct Epoxy Grout For The Application

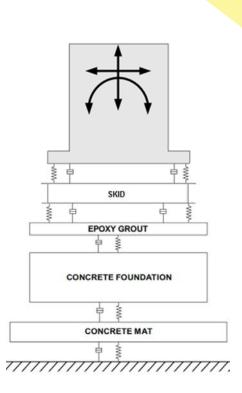
Agenda

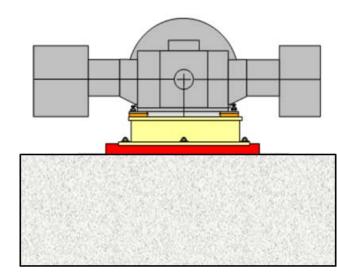
- FasTrac Construction Products
- Selecting Grouts
- Technical Aspects of Grout, Grouting Practices, and Techniques

Grout Types

What is Grout

API 686 (American Petroleum Institute)


 Grout provides uniform support & a load-transfer link between the equipment and its foundation.


ACI 351 (American Concrete Institute)

 Grout that is used in the space between plates or machinery & the underlying foundation that is expected to maintain sufficient contact with the base to maintain uniform support

Static & Dynamic Loads

- Equipment, Fatigue, and Vibration
- Vibration = Dynamic Force x Dynamic Flexibility
- Load Path Transfer

What is Grout?

API 686

- Cementitious Grout Any type of grout material that is cement based
- Epoxy Grout A type of grout material that consists of a resin base that is mixed with a curing agent (hardener) & usually an aggregate filler

Grout Reduces Vibration

- Rigid Body Motion
- Flexible Body Motion
- 6 Degrees of Freedom
 - X, Y, Z, ROT_x, ROT_y, & ROT_z

ACI 351

- Grout A mixture of cementitious materials & water, with or without aggregate, proportioned to produce a pourable consistency without segregation
- Epoxy Grout A mixture of commercially available ingredients consisting of an epoxy bonding system, aggregate or fillers, & possibly other proprietary materials

Grout Selection – Epoxy or Cement

Ероху

- Equipment over 50 hp
- Compressive Strength
 - 14,000-18,000 psi
 - 96-128 MPa
- Pour depth
 - 38.1mm 457.2mm (1.5" 18")
- Dynamic & critical equipment
- Rotating, reciprocating, impact, or impulsive
- High early strength
- Chemical & oil resistance
- Vibration damping
- Monolithic structure
- Rehab or repair
- Some can be pumped with counsel from suppliers

Non-shrink Cement

- Equipment under 50 hp
- Compressive Strength
 - 7,000-12,000 psi
 - 48-83 MPa
- Pour depth
 - 38.1mm 127mm (1.5" to +5")
- Non-critical & static equipment
- General civil construction
- Anchor bolt cables or rods without high tensile loads
- Elevated temperature environments
- Filler material
- Can be pumped with recommendations from suppliers
- ASTM 1107 and/or CRD C621

Epoxy Grouts Are Not The Same

			ASTM C579		
	ASTM C1339	ASTM D2471	Method B, Load Rate II		
	Flow Box	Peak Exotherm	Compressive Strength		
	Time	Temp F	3 Day	7 Day	
Brand A	59	105.2	14,106	15,629	
Brand B	28	100.5	12,795	14,485	
Brand C	10.2	116.6	13,456	14,029	
Brand D	89	99.8	13,245	14,200	
Brand E	9.7	114.6	12,767	13,423	

PIP STS03601 Epoxy Grout Specification

5.1.1

Epoxy grout for equipment or machine baseplates shall meet the following physical properties (see API 610 Appendix L):

5.1.1.1 Minimum compressive strength (ASTM C579): 12,000 psi (80 MPa) at 7 days

ASTM C1339 Flow Box Test

FLOW Box Video

Epoxy Grouts

Should be mixed according to manufacturers directions

Each type will have different yields & aggregate bags

Field Modified Pumpable or Pourable Grouts

Typically, deep pour technology with reduced aggregates

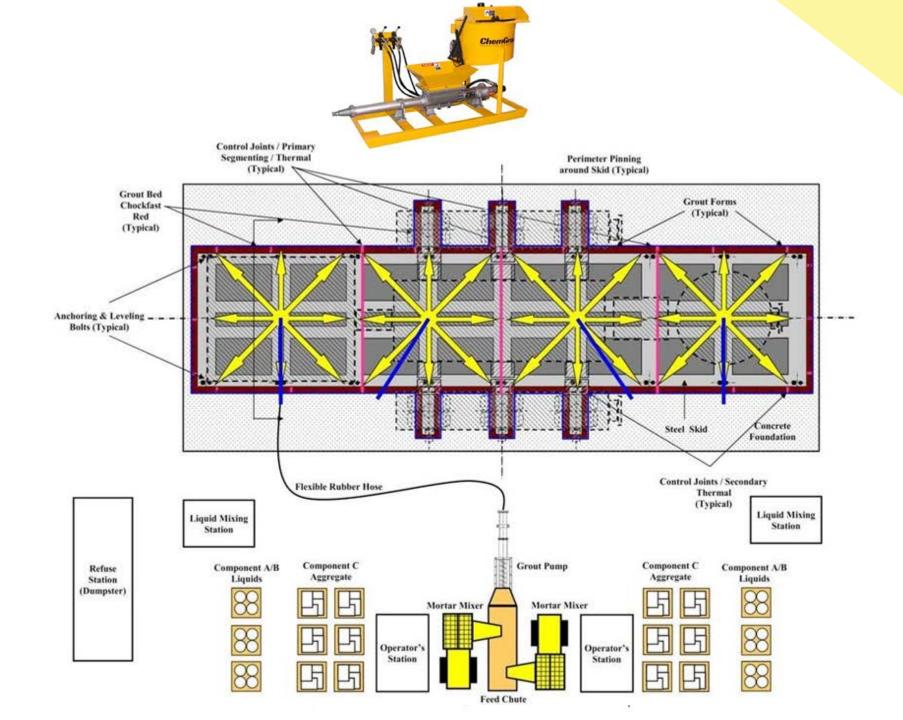
Altered physical attributes

- Accelerated exothermic reaction
- Shortened pot life
- Decreased compressive strength +/-10% (per bag)
- Lowered compressive modulus of elasticity
- Higher Coefficient of Linear Thermal Expansion (COLTE) effects

Yield is compensated with resin system

- Hidden costs
- 1 bag = 20% to 25% of the unit, yield, or volume

For Example:


- Project Requirement: 250 standard units of epoxy grout
- \$2,203.82 AED per unit (\$600 USD)
- \$550,954.50 AED Total estimated material cost (\$150,000 USD)
 - + 55 extra cans of resin
 - + \$121,209.99 AED material costs (\$33,000 USD)
- \$672,164.49 Total final material costs (\$183,000)

Value Engineered or Designed Pumpable Grouts

- Highly fluid three-component epoxy
 grout
- No reduction or manipulation of aggregate required
- Formulated to maximize installation
- Enhanced constructability
- Schedule flexibility
- Can be poured traditionally
- High effective bearing area (EBA) over 95%
- Advantageous efficiency
- Multiple stories
- Long distances
- Better ergonomics
- Develops safer practices

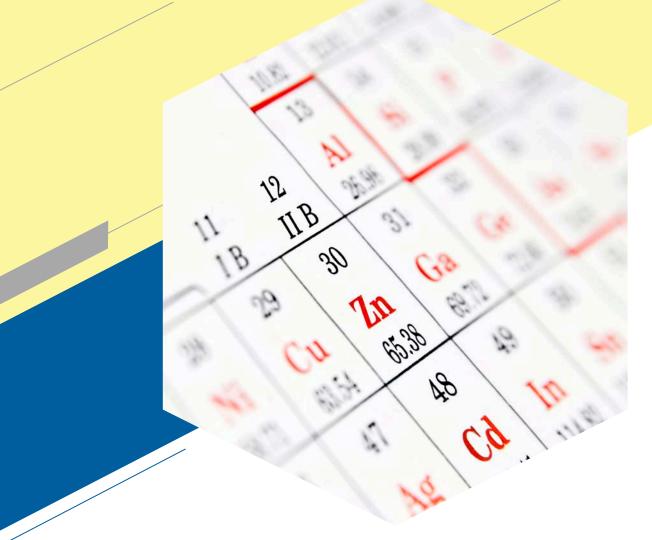
Typical attributes

- Compressive Strength
 - +14,000 psi (97 MPa)
- Compressive Modulus
 - +1.6 x 105 psi (11 MPa)
- Tensile Strength
 - +2,300 psi (16 MPa)
- Coefficient of Linear Thermal Expansion (COTE)
 - 16 to 19.1 x 10⁻⁶ in/in/°F
 - 20.1 to 34.4 x 10⁻⁶ mm/mm/°C
- Bond-Steel
 - +2,050 psi (14.1 MPa)
- Bond-Concrete
 - +1,550 psi (10.7 MPa) or Concrete failure



Value Engineered or Designed Pumpable Grouts

North


Value Engineered or Designed Pumpable Grouts

Extended Aggregate Systems

- Amplified yield
 - 20% to 25% per bag
- Add ³/₈" rounded pea gravel (washed & kiln dried) or 1 extra bag of unit
- Increased Modulus of Elasticity
 - ASTM C 579
- Improved coefficient of linear thermal expansion (COTE)
 - Closer to steel & concrete
- Enhanced compressive PSI strength
- Good bondability

- Pour depth flexibility
 - 101.6mm to 1,219.2mm (4" to 48")
- Gentle exothermic cure
 - 24 hours
- Better economy
- Uses
- Foundation Block
- Deep baseplates or skids
- Quick turnaround
- When you can't wait on concrete cure

Technical Aspects of Grouting

Equipment Foundations – API 686

- Soil-supported reinforced concrete foundations
 - Elevated machinery may be directly supported by structural steel with adequate stiffness & strength
 - Thickness is normally ¹/₅ the least plan dimension & less than ¹/10 the largest plan dimension
 - Grout representative should be consulted to determine the maximum & minimum thickness of grout
- Follow ACI 318 Building Code Requirements for Reinforced Concrete
- Block foundations have a minimum mass of:
 - 3x the mass of centrifugal and rotary screw machinery
 - 5x-10x the mass for reciprocating equipment
- Width of foundation should be at least 1.5x the vertical distance from the base to the machine centerline
- Consider protective epoxy coatings or corrosion prevention concrete additives to avoid foundation and internal rebar deterioration
- 27.58 MPa compressive strength in 28 days (4,000 psi)
- High early concrete can be used to strip forms and place equipment sooner
 - BSA specialized concrete solutions to pour epoxy grout in 3 days vs. 28 days

Compressive Strength

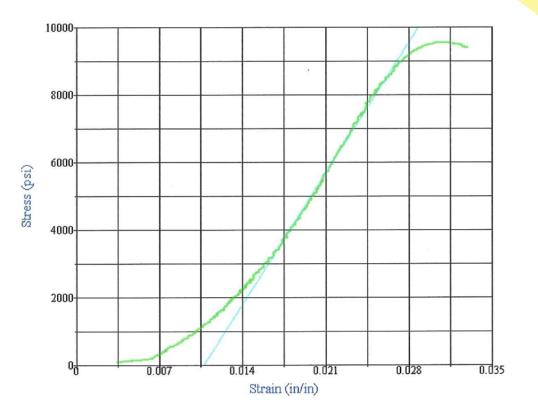
- Measure of the ability of a material to resist breaking under crush loading
- Maximum load applied before failure divided by the cross-section area
- Typical units are in lb/in2 or MPa (N/mm2)
- Epoxy Grout is not Concrete

Process Industry Practices (PIP) STS03601

- Minimum 82.74 MPa @ 7 days (12,000 psi)
- ASTM C579 Method B Modified

Compressive Strength

- 2" (50 mm) cube specimens
- Molds to be brass or stainless steel
- The molds should have interior surfaces that are flat within 0.002" (0.50 mm)
- Mold height and width of each mold cavity must be within 50.8mm +/- 1.59mm
- Interior Sides of mold must be within 90° +/- 0.5°
- If not smooth, sand ground, or machine
- Do not cap the specimen with capping materials
- Load rate for cube 0.2 to 0.25 in/min
- In lieu of waiting 28 days, the specimen can be artificially increased by heating



Compressive Modulus of Elasticity

- Stiffness of a material
- Relationship of the amount of deformation that occurs when a load is applied to a material
 - A stiff material needs more force to deform compared to a soft material
- Used to predict the amount of movement when torquing anchor bolts

Deflection =

(Height of Grout * Applied Compressive Load) (Compressive Modulus of Elasticity * Contact Area)

Coefficient of Linear Thermal Expansion

 FasTrac CE815

 16 x 10-6/0F at 320F to 1400F

 FasTrac CE815 Super Flow

 16 x 10-6/0F at 320F to 1400F

 FasTrac CE820 Chock

 17 x 10-6/0F at 320F to 1400F

A similar coefficient of linear thermal expansion between grout and the mounting surface can help prevent issues in the field and allow the equipment system to act more monolithically.

ASTM C531

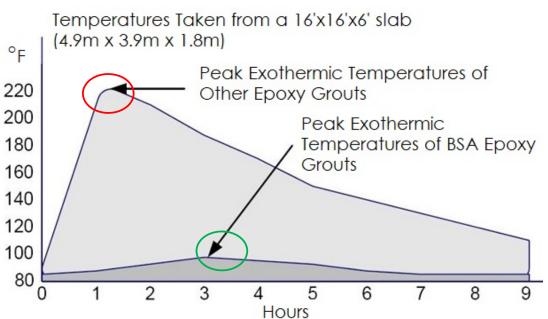
Coefficient of Linear Thermal Expansion

General Recommendations for Spacing of Expansion Joints

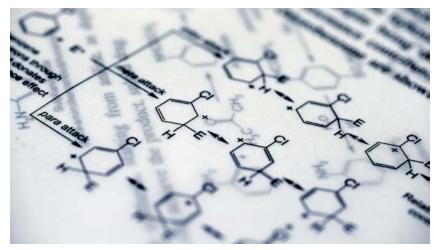
General Operating Environment	Expected Temperature Cycling	Joint Spacing (ft)	Joint Spacing (m)
Indoors / Climate Controlled	Low	6-7 ft.	1.8-2 m
Non-Climate Controlled Environment	Medium	5-6 ft.	1.5-1.8 m
Outdoors	High	3-5 ft.	0.9-1.5 m
Crane Rails	Medium	6-10 ft.	1.8-3.1 m

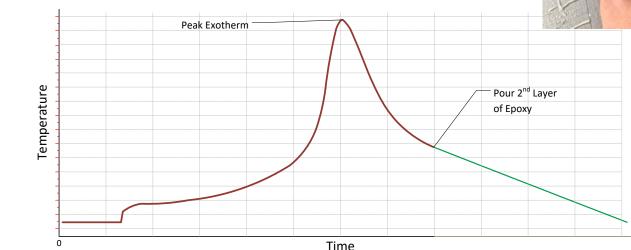
Adhesion or Bond Strength

- The ability of a material to bond to a substrate
- Often depends on the tensile strength of the substrate
- Applicable Testing Standards based on material
- PIP STS03061 Minimum Bond Epoxy Grout to Concrete = 2000 psi (14 MPa)

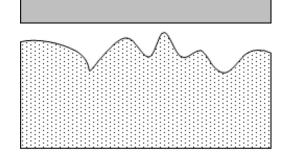

Material	Test	Psi	MPa
	C882 Slant Shear	3,500	24.1
	C1583 Tensile	Concrete Failure	

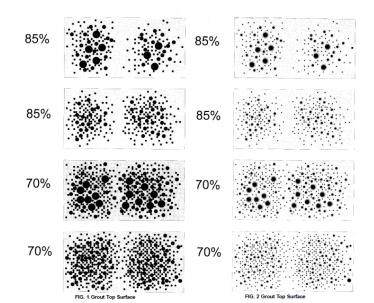
Peak Exothermic Reaction


- Maximum internal temperature reached during the exothermic cycle
- Most effected by the amount of material in a location and initial temperature of material
- Higher values can lead to overexpansion and over contraction, which could lead to formation of voids and loss of surface contact
- Applicable Standards
 - Epoxy Grouts ASTM D 2471
 - Epoxy Chocks ASTM D 2471



Pouring Layers of Epoxy Grout


- Ideal time is to pour when previous layer has completed exothermic cycle and still warm, +/- 24 hours
- If more than 24 hours is exceeded:
 - Amine blush (waxy appearance) may form on surface, limiting bond creation across layers
 - Roughen surface with 40 grit sandpaper & clean
- No loss in compressive strength
- Adhesion across layers is greater than tensile strength



Effective Bearing Area

- Concrete surface & steel baseplates have irregular surfaces
- Material is needed to fill irregularities and provide full support to base of machinery
- Percentage of surface-to-surface direct contact
- Factors that can affect EBA
 - High Exothermic Temperatures
 - Entrapped Air
 - Overpour Height
 - Size and Shape of Aggregate
 - Coefficient of Linear Thermal Expansion
 - Pot Life
 - Manipulation of yield (aggregate dose)

Grouting Practices & Techniques

Grouting Practices & Tips

- Pre-condition Grout
 - 48 hours
 - 65°F-95°F | 16°C-35°C
- New concrete foundations must be cured (ASTM D4263)
- No oil, grease, water, soil, debris, or etc. on foundation
- Keep dry
- Chip concrete surface
 - Exposed 50% broken aggregate
 - Pneumatic moil/chisel bit
 - Could be ³/₄" to 1" peaks and valley difference (19mm-25mm)

- Bedplate
 - Clean, bright metal
 - White metal / sandblast
 - Smooth sharp edges
 - Primer
 - Re-Check depth
- Analyze vent holes
- Confirm bolting designs
- Leak free form work
 - 3 coats paste wax
 - 45° chamfer edge
- Expansion joints
 - Styrofoam, neoprene, etc.
 - 1/2" to 2" thick (13mm-51mm)
- Review constructability

Concrete Surface Prep

Chip Surface

- Removal of top laitance
- Typically ³/₄" to 2" (19mm-51mm)
- Reveal 50% broken aggregate
- Pneumatic moil or chisel bit
- No jackhammers
- Bushing or scarifying the surface is not the same as chipping

Clean Other Surrounding Contact Surfaces Smooth Sharp Edges

• 90° Angles Produce Cracking

Skid or Base Surface Prep

Best Preparation

- White Metal Sandblast
- Solvent Wash

If not installed immediately

- Complexed zinc primer
- Applied at 3 mills or less to clean steel
- Scuff sand bottom or mounting surfaces
- Cleaned and degreased

Because zinc is more reactive than steel it corrodes first (sacrificially), before the steel. It is this mechanism that slows or prevents steel corrosion.

- Organic Zinc
- Inorganic Zinc
- Complexed Zinc
- Epoxy Zinc Primers

Grouting Primers

Inorganic Zinc & Paint

- Most commonly available
- Preferred for better corrosion protection
- Not recommended in structural systems
 - Low internal tensile strength
 - Higher risk of failure with base & grout
- Made using grout metallic zinc powder with inorganic polymeric liquid

Complexed Zinc

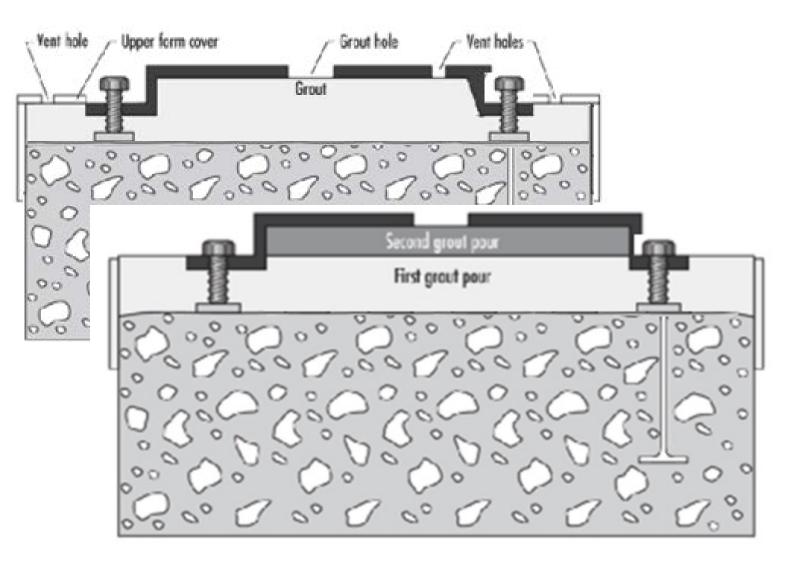
- High quality
 - 2-Component
 - Polyamide epoxy containing complexed phosphate
- Zinc & phosphate combined at the molecular level
- Non-metallic compound with anticorrosion attributes
- Promotes adhesion of grout to steel
- Compatible to epoxy

Analyze Vent Holes

Analyze Vent Holes

Verify Vent Holes

- 1/2" Diameter (13 mm)
- On 18" centers (457 mm)
- Look for structure elements that would block flow
- Potential air entrapment zones
- More is better


Analyze Vent Holes

Verify Vent Holes

- 1/2" Diameter (13 mm)
- On 18" centers (457 mm)
- Look for structure elements that would block flow
- Potential air entrapment zones
- More is better

Leak Free Formwork

Formwork

- Use headboxes
- Leak free & watertight
- 3 coats of wax
- Metal dam for chocks
- 45° chamfer edge
- No power nailing
 - Can cause concrete fractures

Formwork

- Use headboxes
- Leak free & watertight
- 3 coats of wax
- Metal dam for chocks
- 45° chamfer edge
- No power nailing
 - Can cause concrete fractures

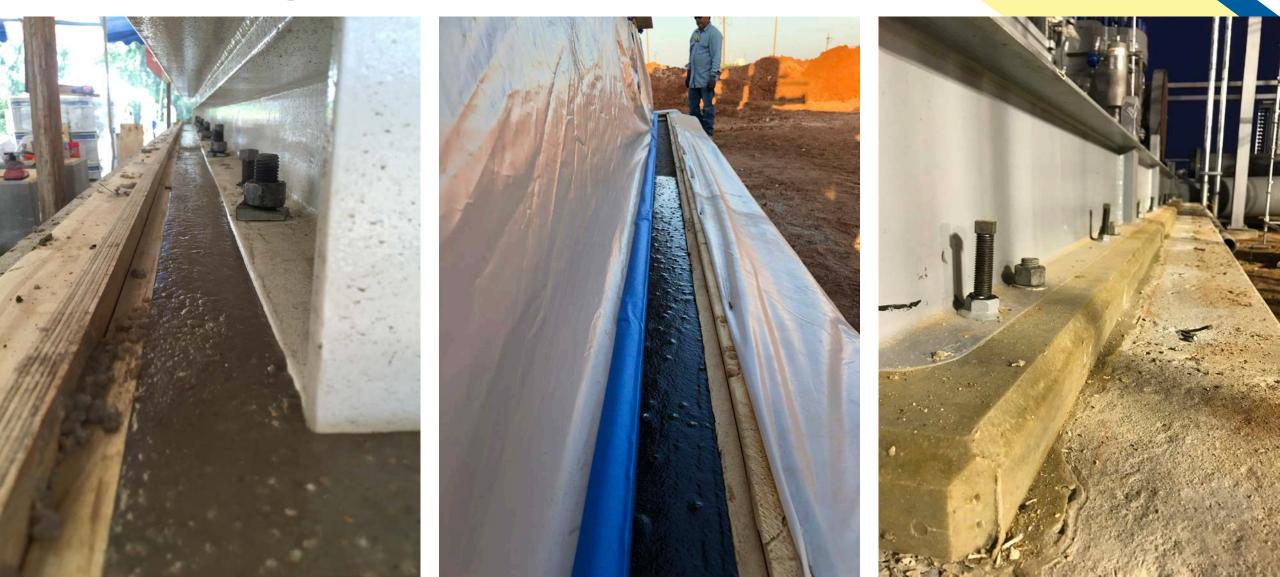
- Adequate grout supply
- Pre-Condition working environment
 - 12 hours
- Head boxes ready
- All Bolts wrapped
 - Weather stripping + duct tape
 - Prevent grout bonding
- Proper damming
- Removal of shims/jacks
- Alignment confirmed
- Proper mixing equipment
 - Mortar Mixer
- Arrangement of proper clean up procedure

- Mix products according to manufacturer or distributor recommendations
- Seal joints
 - Expansion joint compound or polysulfide joint sealant
- Post-Condition working environment
 - 48 hours
 - Transition gradually
- Final inspection

Precondition of Grout & Environment

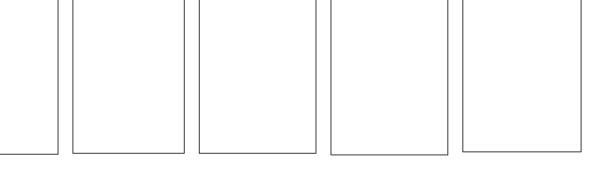
Precondition of Grout & Environment

- Pre-Condition working environment and all grouting components
 - 12 hours
 - The aggregates represent 80% of your yield, climatize appropriately



Precondition of Grout & Environment

- Pre-Condition working environment and all grouting components
 - 12 hours
 - The aggregates represent 80% of your yield, climatize appropriately
 - Tents / Enclosures
 - Heating Blankets
 - Wind blocks
 - Heaters



References

- American Concrete Industry ACI 351 Foundations for Dynamic Equipment
- American Petroleum Institute API 610 Centrifugal Pumps for Petroleum, Petrochemical, & Natural Gas Industries
- American Petroleum Institute API 686 Recommended Practice for Machinery Installation & Installation Design
- Forsthoffer, M. S. (2017). More best practices for rotating equipment. Elsevier Inc.
- Harrison, D. (2013). The grouting handbook. Elsevier Inc.
- ITW Engineering Manual. (2013). Illinois Tool Works Performance Polymers.
- Process Industry Practices PIP STS03600 Nonshrink Cementitious Grout Specification
- Process Industry Practices PIP STS03601 Epoxy Grout Specification

David Anderson Director of Industrial Markets FasTrac Construction Products <u>danderson@ccmaterial.com</u> C. 214-724-6899