

CLOSING THE GAP MAOP VALIDATION

CONTENT

- 1. Regulatory Review
- 2. Case Study: Material Documentation using NDT

CONTENT

- 1. Regulatory Review
- 2. Case Study: Material Documentation using NDT

REGULATORY REQUIREMENTS

Percentage of gas transmission pipeline mileage installed in the USA [1]

1) J. F. Kiefner, M. J. Rosenfeld, The Role of Pipeline Age in Pipeline Safety, Final Report No. 2012.03, INGAA Foundation, October 2012

- 305,000 miles (490,850 km) of natural gas transmission pipelines in the USA
- Approx. 50% of all pipelines installed between 1950 and 1970
- Approx. 66% of all pipelines installed prior to 1970 ("preregulation pipelines")

REGULATORY REQUIREMENTS

PSA § 23 Regulatory Demands:

- Operators are required to **identify pipeline sections** with insufficient records to substantiate MAOP/MOP for steel pipelines.
- MAOP/MOP must be reconfirmed for sections with insufficient records.
- Verification of Records and Reporting requires operators to identify pipe segments for which they do not have records to substantiate MAOP for all Gas Transmission steel pipe (Class 3, 4 and all HCAs)
- PSA §23 "Testing Regulations" Requires conducting tests to confirm the
 material strength of previously untested gas transmission steel pipelines in
 high consequence areas (HCAs) and operating at a pressure greater than 30
 % SMYS that were not previously pressure tested;
 - Tests can be either pressure testing or alternative equivalent means such as ILI programs.

OUTLOOK IN REGULATORY REQUIREMENTS

- The drafted and revised IVP gas transmission lines was published on 09/10/2013.
- The drafted IVP hazardous liquid lines was published on 09/17/2014
- Industry reviews and comments (ongoing).
- Release is expected shortly.

IVP PRINCIPLES APPLY TO HIGHER RISK LOCATIONS

- High Consequence Areas (HCAs)
- Moderate Consequence Areas (MCAs)
 - an onshore area that is within a potential impact circle, containing one or more buildings intended for human occupancy, an occupied site, or a designated Federal interstate, expressway, or 4-lane highway right-of-way, and does not meet the definition of high consequence area, as defined in § 192.903

IVP PRINCIPLES SCREENING

Screen segments for categories of concern

- Grandfathered Pipe
- Lack of Records to Substantiate MAOP
- Lack of Adequate Pressure Test
- Operating pressures over 72% SMYS (pre-Code)
- History of Failures Attributable to Manufacturing or Construction Defects
- Legacy materials and construction techniques

IVP PRINCIPLES MATERIAL DOCUMENTATION AND VERIFICATION

Validated Traceable and Complete Material Documentation for:

Pipe and fittings

Yield Strength and Manufacturing Seam Process

Valves

Pressure rating and weld end compatibility

Components

Pressure rating compatibility

Else Material Properties must be established via:

- Cut out and Test Pipe Samples
- Non-Destructive Testing (on-going industry projects)
- Manufacturing markings during Field verification for valves, flanges, etc
- Other

IVP PRINCIPLES MAOP ASSESSMENT

Operator to choose between:

- Pressure Test
- Pressure Reduction
- ECA
- Pipe Replacement
- Alternative

CONTENT

- 1. Regulatory Review
- 2. Case Study: Material Documentation using NDT

ROMAT PGS – THE DATA EVALUATION PROCESS

ROMAT PGS – THE DATA EVALUATION PROCESS

ROMAT PGS – THE DATA EVALUATION PROCESS

CASE STUDIES – PIPE GRADE RESULTS

CASE STUDY ONE

Re-Allocation of pipe line at a gravel pit

Ordered pipe: X 42; API 5 L

Delivered pipe: X42/ X52; API 5L

Requirement for yield strength

X 42 Min./Max. Yield 42 ksi/72ksi

X 52 Min./Max. Yield 52 ksi/77ksi

Investigation on mill certs: yield strength between 58 ksi and 62 ksi

Tool measurements: yield strength between 60 ksi and 63 ksi.

Inspection System Result Verification insitu: verification joint = 63.02 ksi

CASE STUDIES – PIPE GRADE RESULTS

CASE STUDY TWO

Re-Allocation of pipe line at a river crossing

Ordered pipe: X 52; API 5 L

Delivered pipe: X 52; API 5L

Requirement for yield strength

X 52 = Min./Max. Yield 52 ksi/77ksi

Tool measurements: Section: 55 ksi until 58 ksi

Outlier 1 yield strength 47.94 ksi

Outlier 2 yield strength 47.09 ksi

CASE STUDY TWO – PIPE GRADE PLOTS

CASE STUDY TWO

Re-Allocation of pipe line at a river crossing

Ordered pipe: X 52; API 5 L

Delivered pipe: X 52; API 5L

Requirement for yield strength

X 52 = Min./Max. Yield 52 ksi/77ksi

Tool measurements: Section: 55 ksi until 58 ksi

Outlier 1 yield strength 47.94 ksi

Outlier 2 yield strength 47.09 ksi

Discrepancy was found between MAOP record and As-Built at the river crossing. As-Built indicated pups were installed but no material records were found. Joints established as X-46 per ILI.

PROCESS OF MAOP RECONFIRMATION COMPLETION OF RECORDS

THANK YOU FOR JOINING THIS PRESENTATION.

